Self-assembled templates for the generation of arrays of 1-dimensional nanostructures: from molecules to devices.

نویسندگان

  • Richard A Farrell
  • Nikolay Petkov
  • Michael A Morris
  • Justin D Holmes
چکیده

Self-assembled nanoscale porous architectures, such as mesoporous silica (MPS) films, block copolymer films (BCP) and porous anodic aluminas (PAAs), are ideal hosts for templating one dimensional (1D) nano-entities for a wide range of electronic, photonic, magnetic and environmental applications. All three of these templates can provide scalable and tunable pore diameters below 20 nm [1-3]. Recently, research has progressed towards controlling the pore direction, orientation and long-range order of these nanostructures through so-called directed self-assembly (DSA). Significantly, the introduction of a wide range of top-down chemically and physically pre-patterning substrates has facilitated the DSA of nanostructures into functional device arrays. The following review begins with an overview of the fundamental aspects of self-assembly and ordering processes during the formation of PAAs, BCPs and MPS films. Special attention is given to the different ways of directing self-assembly, concentrating on properties such as uni-directional alignment, precision placement and registry of the self-assembled structures to hierarchal or top-down architectures. Finally, to distinguish this review from other articles we focus on research where nanostructures have been utilised in part to fabricate arrays of functioning devices below the sub 50 nm threshold, by subtractive transfer and additive methods. Where possible, we attempt to compare and contrast the different templating approaches and highlight the strengths and/or limitations that will be important for their potential integration into downstream processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic nanostructures templated on self-assembled DNA scaffolds

We report on the self-assembly of oneand two-dimensional DNA scaffolds, which serve as templates for the targeted deposition of ordered nanoparticles and molecular arrays. The DNA nanostructures are easy to reprogram, and we demonstrate two distinct conformations: sheets and tubes. The DNA tubes and individual DNA molecules are metallized in solution to produce ultra-thin metal wires. (Some fig...

متن کامل

DNA Nanostructures-Mediated Molecular Imprinting Lithography.

This paper describes the fabrication of polymer stamps using DNA nanostructure templates. This process creates stamps having diverse nanoscale features with dimensions ranging from several tens of nanometers to micrometers. DNA nanostructures including DNA nanotubes, stretched λ-DNA, two-dimensional (2D) DNA brick crystals with three-dimensional (3D) features, hexagonal DNA 2D arrays, and trian...

متن کامل

Macroscopic arrays of magnetic nanostructures from self-assembled nanosphere templates.

We have extended the widely used technique of nanosphere lithography to produce nanosphere templates with significantly improved long-range order. Single, ordered domains stretching over areas greater than 1 cm2 have been achieved by assembling spheres with the correct surface chemistry on a water/air interface. Self-assembly over macroscopic areas is facilitated by a combination of electrostat...

متن کامل

Effect of Temperature and Reaction Time on the Morphology and Phase Evolution of Self-assembled Cu7.2S4 Nanospheres Obtained from Nanoparticles and Nanorods Synthesized by Solvothermal Method

In this research, self-assembled copper sulfide nanospheres were synthesized by the solvothermal method and the effects of reaction parameters, including reaction time and reaction temperature on the morphology and phase evolution of copper sulfide nanostructures were investigated. For the identification of copper sulfide nanostructures, X-ray diffraction (XRD), infrared spectroscopy (FT-IR), f...

متن کامل

Generating suspended single-walled carbon nanotubes across a large surface area via patterning self-assembled catalyst-containing block copolymer thin films.

Using self-assembled block copolymers as templates, catalytically active nanostructures with controlled size and space have been produced. A self-assembled polystyrene-b-polyferrocenylsilane thin film and monolayer of surface micelles of cobalt-complexed polystyrene-b-poly(2-vinylpyridine) are fully compatible with novolac-based conventional photoresists. Combining bottom-up self-assembly of ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 349 2  شماره 

صفحات  -

تاریخ انتشار 2010